
ARMY RESEARCH LABORATORY mm^ T 
j-*^ rc-S^A^-wt- 

A Nondimensional Parameterization for Sound Propagation 
in the Atmosphere 

by Michael Mungiole and D. Keith Wilson 

ARL-TR-2950 March 2003 

Approved for public release; distribution unlimited. 

20030525 159 



NOTICES 

Disclaimers 
The findings in this report are not to be construed as an official 
Department of the Army position, unless so designated by other 
autiiorized documents. 

Citation of manufacturers' or trade names does not constitute an official 
endorsement or approval of the use thereof 



Army Research Laboratory 
AdeIphi,MD 20783-1197 

ARL-TR-2950 March 2003 

A Nondimensional Parameterization for Sound Propagation 
in the Atmosphere 

Michael Mungiole and D. Keith Wilson 
Computational and Information Sciences Directorate, ARL 

Approved for public release; distribution unlimited. 



INTENTIONALLY LEFT BLANK. 

11 



REPORT DOCUMENTATION PAGE Form Approved 
0MB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing insb-uctions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for tailing to 
comply with a colIet:tion of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

March 2003 

2. REPORT TYPE 

Final 

3. DATES COVERED (From - To) 

September 2001 to August 2002 

4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER 

A Nondimensional Parameterization for Sound Propagation in the Atmosphere 
5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

62784A 
6. AUTHOR(S) 

Michael Mungiole and D. Keith Wilson 

Sd. PROJECT NUMBER 

2FEH26 
5e. TASK NUMBER 

Sf. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
Attn: AMSRL-CI-EE 
2800 Powder Mill Road 
Adelphi,MD 20783-1197  

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

ARL-TR-2950 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
2800 Powder Mill Road 
Adelphi,MD 20783-1197 

10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSORyMONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 

AMSCode:622784H7111 

DA Project: AH71  
14. ABSTRACT 

Parabolic equation (PE) techniques have been successfully used to obtain numerical solutions of sound pressure attenuation in 

which sound propagation is affected by turbulence and vertical gradients in wind and temperature. The PE models generally 

produce accurate attenuation values, but the execution time is excessive for applications when near real-time results are required. 

To obtain sound level attenuation predictions at selected locations more quickly, we are developing an artificial neural network. 

As a first step in tliis effort, tlie PE and boundary conditions were modified to obtain a nondimensional version, written in the 

MATLAB code. Tliis nondimensional version was developed to be used to train the artificial neural network because a fewer 

number of parameters (seven) would be required to be specified, resulting in a reduced number of model runs to develop the 

training algorithm. Tliis report documents the derivation of tlie appropriate equations that are used in tlie modified 

(nondimensional) version of tlie acoustic propagation model. In addition, graphical data are provided tliat identify the sensitivity 

of sound pressure attenuation to each of tlie seven nondimensional parameters. 

15. SUBJECT TERMS 

Soiind propagation, parabolic equation techniques 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 

UNCLASSIFIED 
b. ABSTRACT 

UNCLASSIFIED 
c. THIS PAGE 

UNCLASSIFIED 

17. LIMITATION 
OF ABSTRACT 

UL 

18. NUMBER 
OF PAGES 

18 

19a. NAME OF RESPONSIBLE PERSON 
Michael Mungiole  
19b. TELEPHONE NUMBER {Include area code) 
301-394-1775 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18 

Ul 



INTENTIONALLY LEFT BLANK. 

IV 



Contents 

List of Figures vi 

List of Tables vi 

1. Introduction 1 

2. Derivation of the Nondimensional Equations 1 

2.1 Parabolic Equation 2 

2.2 Ground Boundary Condition 3 

2.3 Upper Absorbing Boundary Condition 5 

2.4 Initial Condition 5 

2.5 Atmospheric Profiles 6 

3. Results 8 

4. Summary 11 

5. References 13 



List of Figures 

Figure 1. Influence of normalized source height, receiver height, and horizontal separation 
between them on the normalized sound pressure attenuation 10 

Figure 2. Influence of the angle between propagation and wind directions (Ji), and 
normalized friction velocity, scale for turbulent sound speed fluctuations, and static flow 
resistivity on the normalized sound pressure attenuation 10 

List of Tables 

Table 1. Range and baseline values for the seven normalized parameters (Actual 
[dimensional] values and their units are indicated in parentheses.) 11 

VI 



1.   Introduction 

Parabolic equation (PE) methods have become very popular for the calculation of sound 
transmission along ground-to-ground paths in the atmosphere [1]. These methods can account for 
refraction of the propagating waves by atmospheric wind and sound speed gradients, diffraction 
into shadow regions, and forward scattering of sound by atmospheric turbulence. With the 
introduction of the Green's fimction PE by Gilbert and Di [2], it became possible to perform 
sound field calculations with parabolic equations very rapidly. Nevertheless, even the Green's 
function PE is too slow in many Army applications, where calculations are required at many 
frequencies in fractions of a second. Among these applications are sensor platforms with 
algorithmic adaption to the propagation envirormient, tactical decision aids, and combat 
simulations. 

To address the Army's need for faster sound transmission calculations, we are developing an 
artificial neural network model to predict the transmission loss (diminishment in sound energy 
resulting from propagation in the atmosphere). If successful, the neural net will provide an 
extremely fast but still accurate determination of transmission loss. Although neural nets have 
been used previously in acoustics [3], [4], [5], the main application has been automatic target 
recognition (ATR). Here, we are attempting something completely different, namely, the 
prediction of propagation effects. In principle, the propagation neural net could be used to 
compensate signatures for the propagation effects, thereby improving robustness of ATR 
algorithms, whether based on neural nets or other methodologies. 

In the development of any neural net, an appropriate set of input (training) and output variables 
must be determined. The output variable for the propagation neural net is simply the sound 
pressure at the receiver position. The input variables and parameters would be the propagation 
geometry (target and sensor heights, horizontal separation, sound frequency), atmospheric 
conditions (wind velocity and sound speed profiles), and acoustical ground properties. 
Successful development of the neural net requires the output variable to have a fairly smooth 
dependence on the input variables. It is also desirable to keep the input variables as few in 
number as possible. For this purpose, we develop in this report a nondimensional version of the 
acoustic propagation model that describes the propagation with a minimal number of parameters. 
The propagation model includes the wave propagation equation (in this case, the PE) as well as 
equations for the boundary conditions, initial condition, and atmospheric fields. 

2.   Derivation of the Nondimensional Equations 

Among the features of this model are input parameters that specify the acoustic properties of 
porous media using relaxation theory [6], the ability to handle both narrow and wide angle cases, 
attenuation of the reflection at the upper boundary, and a second order accurate ground boundary 



condition. The model was written in MATLAB' [7] and follows the procedures that are outlined 
in West et al. [1], which use a finite difference numerical technique to solve the parabolic partial 
differential equation. 

2.1    Parabolic Equation 

We take as our starting point the following narrow angle parabolic equation for sound 
propagation in a moving, inhomogeneous atmosphere: 

dP/dx = i/{2k,)(d'/dy'+d'/dz' + k^^-e,)p, (1) 

in which ;? = P exp (ikox)x^'^ is the sound pressure, x is the horizontal coordinate in the 
propagation direction,;; is the horizontal coordinate perpendicular to the propagation, z is the 
height, iteff is the effective wave number, and ^o is the wave number at ambient conditions.^ 
Furthermore, hs=27rfces, in which/is the fi-equency and Ceff- c + u^c is the effective sound 
speed, c being the actual sound speed and M^ the component of the wind velocity in the direction 
of propagation. This equation includes waves traveling outward from the source in a roughly 30- 
degree beam. It was derived by Nghiem-Phu and Tappert [8] and is equivalent to Equation (2.88) 
in Ostashev [9] if the components of the wind perpendicular to the propagation are neglected. 

The PE code we use in this project provides a "pseudo three-dimensional" solution to Equation 
(1), as described by West et al. [1]. In actuality, the field is determined only in the vertical plane 
of the X- and z- coordinates. This is accomplished by neglecting P/x in comparison to dP/dx (a 
far-field approximation) and dropping the differentiation my, with the result 

dP/dx = i /(2^o )(a- / 8z' + k^^ - kl )P. (2) 

This is equivalent to Equafion (15) in West et al. [1] (although with ^eff replacing k) and 
represents the standard narrow angle parabolic equation. Note that P in this equation does not 
have units of pressure but rather, units of pressure divided by the square root of length. We will 
refer to P as the surrogate sound pressure. In practice, we may set k^a = Inflc^n + ia in the 
preceding equation, in which a is an attenuation coefficient that represents the conversion of 
sound energy to heat in the propagating waves. 

Equation (2) contains three fundamental physical dimensions: time, length, and mass. To 
develop a nondimensional version of this equation, we must normalize by three quantities that 
involve these dimensions. We choose here the ambient sound speed (co), ambient air density 
(yoo), and frequency (/). Indicating normalized variables with overbars, we have the following 
nondimensional quantities: 

p=p{cjfr/[p,ct) (3) 

X = x/ / CQ (4) 

z = zf/c, (5) 

' MATLAB is a registered trademark of the Math Works. 
'^Ambient in this report refers to aii arbitrary reference value that is characteristic of tlie propagatmg environment. Typically, 

the value at the source height is used. 



^o=^<,<^o// = 2^ (6) 

and 

'^eff ~ "-efif^O ' J (7) 

Substituting these quantities into Equation (2) results in the following nondimensional version of 
the parabolic equation: 

dP/dx= i/(4;r)(a' /Sz' + ^t^ -4;r')p. (8) 

This equation is solved in a manner similar to the procedure used for the dimensional version in 
West et al. [1], and the detailed steps can be obtamed from this reference. First, the terms are 
rearranged so that the equation is written as 

dP/dx = ad^P/dr+h.P (9) 

and the coefficients a and b„„ after it is transformed into a finite difference equation, are found to 
be 

b„, = 171 
v2^y 

a = i/{47rAz^) 

for m = 1,2, ...,M 
'-k  '' 

(10) 

(11) 

in which Mis the total number of vertical mesh points and Az is the nondimensional difference 
between two vertical mesh points 

The complex wave number, ^„,, is defined by 

(12) 

^,«  =2^/^eff„,  +J(^„ (13) 

In this equation, c^^j.   is the effective sound speed in layer m normalized by co and «,„ is the 

attenuation normalized by wavelength (CQ/J). 

Once P has been determined, the actual nondimensional pressure follows from the equation 

p = Pe'^'^/4^. (14) 

2.2    Ground Boundary Condition 

As discussed by West et al. [1], the ground impedance boundary condition for the parabolic 
equation is 

dP/dx^-lmfp^P/Z^, (15) 



in which Zc is the ground impedance. Many models are available for the impedance of porous 
ground surfaces such as are encountered outdoors. A particularly simple one that nevertheless 
gives accurate results was developed by Wilson [10]. The impedance equation is 

PQCO      fi 

n-0.5 

1 + 
y-\ 

{y-iax,) ,0.5 (l-/G>rJ°-^^ 
(16) 

in which 

r, = ps^ /(2OTjQ)andr, = TV^^r, (17) 

In these equations, the Ty is a relaxation time associated with viscous diffusion, r^ is a relaxation 
time associated with thermal diffusion, y\^ the ratio of specific heats, A/p. is the Prandtl Number, 
q is the tortuosity, O is the porosity, Sp is the pore shape factor, and o-is the static flow resistivity. 
We would like to nondimensionalize the impedance equation in a form using fewer parameters. 
To do so, we first note that 

and define a nondimensional flow resistivity, a , which depends on parameters previously 
defined. 

Combining Equations (18) and (19) gives 

icox^ = imj' /{onf andicoT^ = iTiN^^q' /(oO') 

Substituting them into Equation (16) gives 

Zc=q 1 + r-1 
il-i;dVj„.q^ /af)[     {l-imj-/cr 

LO.5 

-0.5 

(18) 

(19) 

(20) 

(21) 

in which Z, = Z/(poCo) and q = q/Cl. Considering that ^'and Npr are determined once the 

temperature is specified, the only parameters that are required to calculate Z^ are a and ^. 

Thus, the number of ground parameters has been reduced from four (a, q, O, and Sp) to two (c7 
and q). 

In nondimensional fonn, the boundary condition. Equation (15), is 

dP/dz = -2mP/Z^.. (22) 

Regarding the numerical implementation of dP/dz in spatially discretized form, the first order 
accurate case can easily be obtained (West et al. [1], Section 5). For the nondimensional case, the 
first order accuracy boundary condition is found to be 



and the respective nondimensional boundary condition for second order accuracy is 

Po=(4P,-P2)(3-4mAz/zX 

(23) 

(24) 

2.3    Upper Absorbing Boundary Condition 

In order to avoid spurious numerical reflections of the sound wave at the upper boundary of the 
computational domain, an absorbing layer at the top of the domain is often added. Salomons [11] 
suggests the following quadratic form for the attenuation coefficient in this layer: 

a = // 
z-z abs 

Z       — Z y    top abs J 

Z > Z abs (25) 

in which ju is an adjustable parameter (dimensions of inverse length), Zabs is the height where the 
absorbing layer begins, and ztop is the top of the computational domain. The absorbing layer is 
typically 30 to 100 wavelengths deep. Thus, we might rewrite Equation (25) in nondimensional 
form as 

/. 
a -1^ 

z-z. abs 

V   ^.    ) 
,     Z> Z. abs (26) 

in which Nx is the depth of the layer in wavelengths, a = aco/f, and // = juco/f. Salomons [11] 
suggests values for the parameter jU that, while frequency dependent, are only roughly 
proportional to/ Here, we propose setting /7 = 1. This leads to values of/^ that are fairly close 
to the ones in Salomons' Table I, particularly near 100 Hz. 

2.4    Initial Condition 

The "initial condition" here refers to the sound pressure at x = 0, from where the solution is 
marched forward in distance, as opposed to the solution at some initial start time. (Keep in mind 
that the source is assumed to be harmonic, so that there is no start time.) Following Salomons 
[11], we use the following Gaussian starter function for the initial condition: 

P{0,z) = S^lexp -i^-^.f + Rexp -f(- + -J^ (27) 

in which Zs is the source height, S is the source strength (in units of pressure) and 

R = 
ZCAPO^O)+^ 

(28) 



is the surface reflection coefficient. In nondimensional form, these equations become 

P(0, z) = 5 V2^ jexp[- 2;i'{z- z,)' J+ i?exp[- 2;rHz + z J' |, (29) 

in which 

5- = 
A^^o 

(30) 

and 

Z+l 
(31) 

2.5    Atmospheric Profiles 

By the refraction of sound energy, the wind and temperature profiles near the ground can have a 
very significant impact on the pressure field. Therefore, we also need a nondimensional model 
for these profiles. Let us begin by writing the effective sound speed as 

Cgg. = c + ucos/3, (32) 

in which c is the actual sound speed, u is the horizontal wind, and y9is the angle between the 
propagation direction and the wind. Neglecting the effect of humidity (which is usually small), 
the sound speed in air is given by 

C-Cr 1 + 
T , \ 

2Z 
(33) 

0/ 

in which T = T^+T' is the temperature and T a small perturbation about the ambient value TQ. 

The following equations, based on Monin-Obukhov similarity [12, 13], are known to describe 
the near-ground temperature and wind profiles well over reasonably uniform terrain: 

T{z)-T[=r 
PT 

/     \ 
In —-H^„ 

v^c y 

/     \ 
+ % 

v4) j 
-rAz-z,. (34) 

and 

«(--) = 
?'. 

f    \ 
In —-T„ 

-0 \^o J 
+ T "o (35) 

m which ky= 0.40 is von Karman's constant, Pt = 0.95 is the turbulent Prandtl number, Td = glCp 
= 0.0098 K/m is the dry adiabatic lapse rate (accounting for the decrease of temperature with 
height because of compression in the air column), g is gravitational acceleration, ZQ is the surface 

ghness length, w, is the friction velocity, 7; = - < w'T >, /«, is a temperature scale, and rou 



< w'T' >^ is the covariance of vertical velocity and temperature at the surface (kinematic heat 

flux). The variable Zr is a reference height at which the temperature is measured; if we explictly 
set To = T(zr), then T' in Equation (33) equals T(z) - T(zr). The 4^'s are universal functions of 
the dimensionless ratio C, = z/Lg, in which L^ = U^TQ / k^g < w'T' >^ is called the Obukhov length. 

The following equations for 4^;, and *F„, are recommended based on Hogstrom [14] and Wilson 
[15]: 

^Uc)= 2 In l^f^^J^]/! 
-K.m^' 

(36) 

in which the a's and fs are constants with the values Oh = 7.9, a„, = 3.6, b/, = 8.4, and b„, = 5.3. 
The case ^< 0 corresponds to buoyantly unstable conditions, which typically occur when the sun 
heats the ground. Buoyantly stable conditions (4'> 0) typically occur when the ground cools at 
night. In the limit |(^| -> 0, the 4^-functions equal 0 and the profiles assume their familiar 

logarithmic forms for neutral conditions. 

Now, for the effective sound speed, we have 

^eff(^)^^      r,(z-Z,.)^     P,T, 

IT. 

+ 

2KTo 

u,cos/3 

In "¥. 
r    \ z 

v4y 
+ ^. 

^z^ 

KKJ 

kyCQ 
In —-T. 

v4y 

r . \ 
+ "¥.. 

v4y 

(37) 

Using the thermodynamic equations Cp = Cy + R and /= C/Cy, along with the ideal gas law 
Cg = /RTQ , we find F^ = gT^ {y - \)lcl. This relationship allows the second term on the right of 

the previous equation to be rewritten as g{y - l){z - z,. )l2cl. Following Wilson [ 16], it is also 

convenient to define c, = c^TJlT,^. We then have 

cjz)^^_gij-}){z-z^ 

P.c, 
k,.CQ 

2cl 

In- ^„ 
AT; A Ik^.gC^Z 

V    ^* ^0     J 

+ "¥, 
^2k^,gc,z,.^ 

+ 
u^cosp 

kyCfy 
In ^.. 

-0 

2k^.gc,z 
+ "¥.. 

ILCr, 

^2k,,gc,z^^ 

(38) 

Let us next define the following nondimensional variables: c^^ = c^j^lc^, c, = cJCf^, u^ = iijc^, 

g = g /(Co/), 2 = ?/7co, z,- = ^rgl^l' and z^ = z^glcl: 



-eff 
(,),,_(r-i)(P-0 

P.^. 
         r 

k 

ii,cos J3 

ln^_vj, 2k^gc,z 

ln^-^„ 
r 

+ ^, 
^2/:,c.z,.^ (39) 

Ik^gc,!^ 

u! 
+ »F., 

^2/:,c.2, ^ 

u! 

The profile c.^('z; therefore depends on the nondimensional parameters z,, ZQ , g, c., M ,, cos /?. 

It may initially seem peculiar to normalize Zr and ZQ with co^ /g instead of CQ//, as was used for 

other lengths. The advantage of the cl/g normalization is that Zr and ZQ are fixed values in many 
applications; therefore, 2, and z^ are constants and need not be used as parameters in the neural 

net. 

3.   Results 

The development of these nondimensional equations results in 13 nondimensional parameters 
that need to be specified. These are 

1. z^, the source height 

2. z^, the receiver height 

3. Jc,, the horizontal separation between the source and receiver 

4. a , the normalized static flow resistivity for the ground 

5. ^, the tortuosity to porosity ratio for the ground 

6. NA, the number of wavelengths in the upper absorbing layer 

7. JI, the attenuation parameter for the upper absorbing layer 

8. z,., the reference height at which the temperature is measured 

9. So, the roughness length 

10. g', the normalized gravitational acceleration 

11. c., the scale for turbulent sound speed fluctuations 

12. u,, the scale for turbulent wind speed fluctuations (the friction velocity) 

13. cos/?, the cosine of the angle between the propagation and wind directions 



Many of these parameters would not be needed for the training of a neural net. If the calculations 
are done properly, the parameters for the upper absorbing layer, N;i and /7, should not affect the 

solution. The reference height z,. is typically a constant value. For a given ground surface, ZQ , 

q , and the ratio alg are constants, alg is a constant because the source frequency is eliminated 
when this ratio is taken, resulting in the necessity of only one of these parameters being 
specified. Thus, as few as seven parameters could be used to train the neural net. These include 
the three parameters that specify the source and receiver locations {z^,z^, and x^), the three 

parameters needed to calculate the normalized effective sound speed (c,, M, , and cosy^, and the 
nondimensional flow resistivity ( CT ), which is used to calculate the nondimensional ground 
impedance. 

In order to get an idea of the relative importance of each of these seven parameters in generating 
a training algorithm for an artificial neural network, it would be necessary to determine their 
sensitivity on the sound pressure attenuation at a specific location. This was performed for the 
seven parameters, with the results indicated in Figures 1 and 2. The parameter representing each 
respective curve in these figures was varied over a typical physical range, and the resulting sound 
pressure attenuation was determined from the nondimensional model. The smallest and largest 
values for each parameter represent 0% and 100%, respectively, in the figures. These values and 
the baseline values for the model runs in which the respective parameter was not varied are given 
in Table 1. For simulation runs in which the receiver height and horizontal separation were not 
the parameters being varied, the sound pressure attenuation was obtained at a location for which 
the value of these parameters were 1 m and 500 m, respectively. 

The effects of varying the geometric parameters are indicated in Figure 1 while the influence of 
the parameters used to calculate effective sound speed and ground impedance are shown in 
Figure 2. Although the range of the sound pressure attenuation is different in these two figures, 
their scales are equivalent. This allows a direct comparison of the sensitivity of the sound 
pressure attenuation to each of the seven manipulated parameters. As indicated in these figures, 
the attenuation is relatively insensitive to the source and receiver heights and friction velocity. 
For the source and receiver heights, this is attributable to the small range over which these 
parameters were manipulated. In general, varying static flow resistivity had little effect on sound 
attenuation. For small values of this parameter, however, there was a more substantial change in 
the sound pressure attenuation. This could be partly attributable to the large range over which 
this parameter was varied, which was almost two orders of magnitude. As the wind direction was 
varied from 0 to 180 degrees (i.e., from the same to the opposite direction of sound propagation), 
the sound attenuation varied by approximately 10 dB. The ranges over which the normalized 
horizontal separation and sound speed fluctuation scale were varied had the largest effects on 
attenuation, with both of them producing more than a 17-dB reduction in the sound pressure. The 
effect of the sound speed fluctuation scale on attenuation was unique in that it was the only 
parameter that did not exhibit a monotonically increasing or decreasing relationship. 

Because the sound pressure attenuation values are normalized to p^c], it is probably necessary 

to put the results in proper perspective. Dividing the sound pressure by the product of p^cl 

results in a decrement of approximately 103 dB; thus, one would need to add 103 dB to the 
values indicated in Figures 1 and 2 to obtain the actual sound pressure level attenuations in the 
figures. 
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Figure 1. Influence of normalized source height, receiver 
height, and horizontal separation between them 
on the normalized sound pressure attenuation. 
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Figure 2. Influence of the angle between propagation 
and wind directions ij3), and normalized friction 
velocity, scale for turbulent sound speed fluctuations, 
and static flow resistivity on the normalized sound 
pressure attenuation. 
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Table 1. Range and baseline values for the seven normalized parameters (Actual [dimensional] 
values and their units are indicated in parentheses.) 

Parameter smallest value largest value baseline value 

source height, Zj 0.0 0.74 0.148 
(m) 
receiver height, z^ 

(0.0) 
0.0 

(5.0) 
0.74 

(1.0) 
0.148 

(m) 
horizontal separation, x^ 

(0.0) 
14.8 

(5.0) 
133.4 

(1.0) 
74.1 

(m) 
angle between propagation 
and wind direction, /3 

(100) 

0 

(900) 

K 

(500) 

0 

friction velocity, M. 1.48*10"'* 1.48*10"^ 8.32*10"* 

(m/s) 
turbulent sound-speed 

(0.05) (0.5) (0.28) 

scale, c. 3.5*10"^ 0.296*10"^ -0.593*10"^ 
(m/s) 
static flow resistivity, a 
(mks rayls/m) 

(-1.18) 
200 
(25000) 

(0.1) 
16000 
(2000000) 

(-0.2) 
1605 
(200000 

4.   Summary 

A system of nondimensional equations for sound propagation in the near-ground atmosphere was 
developed. They are based on the narrow angle parabolic equation for sound propagation in a 
moving medium, a relaxation model for the sound-absorbing lower boundary condition, and 
Monin-Obukhov similarity for the atmospheric profiles. 

11 
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